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Abstract
Investigations during the last few years show that complex PT-symmetric or
pseudo-Hermitian Hamiltonians possess a real discrete spectrum and several
other features akin to a Hermitian Hamiltonian. These developments not only
show us new directions but also demand a revisit to the conventional physics
wherein PT -symmetry could have been invoked. After a review of some
very interesting results, we present the super-barrier reflectionlessness and the
cranking model of the nucleus. These two instances are being viewed as
the meeting ground of the two: PT -symmetry and Hermiticity. The former
presents an agreement and the latter is presently a dichotomy.

PACS numbers: 03.65.Ge, 04.65.Nk, 03.65.−w, 45.50.Pk, 03.10.Yn, 05.20.Gg,
05.45.Mt

1. Introduction

Relaxation of Hermiticity for the reality of the discrete spectrum has given rise to some very
interesting investigations in the last few years [1]. The complex PT -symmetric Hamiltonians
have been found to have a real discrete spectrum provided the energy eigenstates are also the
eigenstates of PT ; if not then the PT -symmetry is said to be spontaneously broken and there
are complex-conjugate pairs of energy eigenvalues [2]. Here P stands for parity transformation
(x → −x) and T stands for time reversal (i → −i).

The investigations regarding the possibilities with new kinds of Hamiltonians have been
very exciting and fruitful. The question of the possibilities of bound states, energy band
structure, transmission/reflection, real phase-space orbits akin to a real Hermitian Hamiltonian
has been very important. In section 2, we review these possibilities and list the usual and
unusual features of the new Hamiltonians with regard to the conventional quantum mechanics.
In section 3, we review the pseudo-Hermiticity and random matrix theory. In section 4, we
review the Gaussian pseudo-orthogonal and Gaussian pseudo-unitary ensembles GpOE and
GpUE—new additions to the random matrix theory, when PT -symmetry is generalized in
terms of pseudo-Hermiticity. In section 5, we bring out the PT -symmetric origin of super-
barrier reflectionlessness of potentials. In section 6, the cranking model of the nucleus has
been revisited to show that the complex energies of the Hamiltonian present a dichotomy as to
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whether the PT -symmetry is spontaneously broken or these are the resonances of a Hermitian
Hamiltonian. We finally conclude in section 7.

2. Possibilities with complex PT -symmetric Hamiltonians

There has been a need to have an exactly solvable model which through a critical parameter
can display both the scenarios of broken and unbroken PT -symmetries. This has been
facilitated by the complex version of Scarf II potential; it has been shown that for the potential
VS(x) = −V1sech2x+iV2 tanh x sech x, when V2 > V1+1/4, the eigenvalues make a transition
from real to complex-conjugate pairs [3]. The new eigenstates are orthogonal in a new way,
i.e.

∫
�PT

m (x)�n(x) dx = ε±δm,n. Mostly, one-dimensional potentials have been studied
under PT -symmetry. An exactly solvable two-dimensional potential V (r, θ) = −α

r
+ iβ cos θ

r2

has been solved in parabolic cylindrical coordinates to display the real discrete spectrum.
When complex PT -symmetric potentials become periodic, it is curious to know whether

we will still have a real energy–momentum dispersion relation, E(K) (energy band structure).
Considering the additional Bloch condition on the wavefunctions, it turns out that E(K) is
real once again [4]; it however remains a conjecture only. It was reported that one gets
an essentially unusual energy band structure. In the reduced Brillouin zone scheme, it was
found that instead of sharp discontinuity at the zone boundary the E(K) curve gets rounded
in essentially leaving [4, 5] the boundary (KL = π). Equivalently, the antiperiodic wave
solutions were found essentially missing for complex, PT -symmetric, periodic potentials.

By considering an interesting extension of the Kronig–Penny model VP (x) = (V1 +
iV2)δ(x − b/2) + (V1 − iV2)δ(x − a − b/2) [6], it has been shown that one gets the usual band
structure if V1 > V2. When V2 becomes greater than V1, one gets the unusual band structure
where apart from some sharp band gaps one may also have rounded bands which may leave
out both the boundaries KL = 0, π . This means that both periodic and antiperiodic wave
solutions may or may not be missing.

When a potential is real it does not matter whether particles enter from the left or the
right of the potential, the probability of reflection (transmission) does not show handedness.
This is the consequence of time-reversal symmetry of the potential. The complex (optical,
absorbing) potential breaks the time-reversal symmetry and it has been proved that when the
total potential is not space symmetric the reflectivity shows handedness [7]. Thus, in general,
reflection probability will depend on whether the particle enters from the left or from the
right, if potential is complex and PT -symmetric. We find that if the real part of a complex
PT -symmetric potential is positive definite the probabilities of reflection (R), transmission (T)
and absorption (A) are normal (all less than unity), if the particle enters from an absorptive
side. Otherwise, R(E) at some energy or in a regime of energies becomes abnormal (>1) [8].
Complex PT -symmetric potential barriers, therefore, act like ‘spy-glass’ fitted in the window
of a room. One can view outside without being viewed from outside. Some more interesting
features of Scrödinger transmissions have been studied.

The concept of classical phase-space orbits has been a doorway from classical to
semiclassical, quantal and statistical mechanics. Inspired by the success [2, 9] of the WKB
method for a class of complex PT -symmetric potentials, it has been shown that complex
PT -symmetric potentials admitting a real discrete spectrum too can have real phase-space
orbits [10]. The phase space (x, p) gets segregated into two parts (x, pr) and (x, pi), the
orbits in the former are symmetric and in the latter part they are anti-symmetric enclosing
null area. However, remarkably the area enclosed by a symmetric orbit accounts correctly for
the phase-space quantization a la Sommerfeld. The interesting nature of the turning points is
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very crucial here. These turning points are of the type (−a + ib, a + ib); they follow from a
more interesting property of the roots of a PT -symmetric equation which are always of the
type (−z∗, z). The existence of such a turning point is the necessary condition of finding a
real discrete spectrum for a complex PT -symmetric potential. Very interestingly, the null
spectrum of many PT -symmetric potentials can be explained by this criterion.

For potentials of the type V (x) = −(ix)ν [2], the semiclassical quantization suggests
several branches of discrete spectra, say when ν > 5. It would be interesting to study both
exact quantal and semiclassical spectra and to explore a way of labelling them by a ‘new
quantum number’.

3. Pseudo-Hermiticity and random matrix theory

The Hamiltonian H is called η-pseudo-Hermitian if ηHη−1 = H. That pseudo-Hermitian
Hamiltonians may have a real discrete spectrum and the eigenstates are then pseudo-orthogonal
as 〈ψm|ηψn〉 = δm,n has been known for a long time [11]. However, after the knowledge
of PT -symmetric quantum mechanics it has again been taken up more rigorously. It has
been very remarkable [12] to suggest that PT -symmetry of a Hamiltonian is nothing but its
P-pseudo-Hermiticity. Immediately after this, the puzzle of real discrete spectrum of non-PT -
symmetric, complex Morse potential was resolved [13] by suggesting that this Hamiltonian is
pseudo-Hermitian under η = epθ (imaginary shift of the position coordinate). Also, several
other non-PT -symmetric potentials were resolved to have a real discrete spectrum under
η = eiφ(x) (‘gauge transformation’) [14].

The concept of PT -symmetry has found a new mathematical framework in terms of
pseudo-Hermiticity. However, since PT -symmetry is physically more appealing, it has
been recasted [15, 17] in terms of pseudo-Hermiticity wherein the concepts of generalized
parity, time reversal and charge conjugation have been evolved. Pseudo-Hermiticity is later
discovered to be composed of ρ and µ [18] as η = (µρ−1)′. Here, a Hamiltonian is termed
as pseudo-real if ρHρ−1 = H ∗ and pseudo-adjoint if µHµ−1 = H ′, where e.g.

(
d

dx

)′ = − d
dx

and H ′ = H Transpose. The former yields a necessary condition for a spectrum to be real and
the latter fixes the definition of the inner product for the eigenstates.

Studying pseudo-Hermiticity using matrices turns out to be very instructive in revealing
many interesting properties of pseudo-Hermiticity in general [17, 18]. It is known that if H
is Hermitian then U = eiH is unitary. It has been very interesting to realize that if G is p-H
then D = eiG is pseudo-unitary and pseudo-unitarity is defined as D† = δD−1δ−1 [19]. This
development could give rise to the construction of new random matrix ensembles GpUE and
GpOE.

Random matrix theory (RMT) [20, 21] was first proposed to study the nearest-neighbour
level spacing distribution (NNLSD). Since level spacing requires two levels, in RMT a large
ensemble of Hamiltonians (2 × 2 matrices) where the matrix elements come from a Gaussian
population are studied. These matrices are symmetric, Hermitian and 4 × 4 symplectic. The
first is invariant under time reversal, the second one is not and the third one is again invariant
but includes Kramer’s degeneracy. The spacing distributions yielded are written combinedly
as Pβ(s) ∼ sβ e−s2

with β = 1, 2, 4 [20, 21]. These are called Gaussian orthogonal
(GO), Gaussian unitary (GU) and Gaussian symplectic (GS) spacing distribution functions,
respectively. These ensembles are referred to as Wigner–Dyson ensembles. More interestingly,
when N × N matrices were studied, the results were not appreciably different from Pβ(s)

given above. The nuclear energy levels of the same Jπ (angular momentum and parity) are
found to obey P1(s) NNLDS. Most importantly, these known spacing distributions for small
values of s show a tendency of linear, quadratic and quartic level repulsion, respectively. These
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characteristic features are used to decide whether the system is invariant under time reversal
and other transformations.

4. New ensembles and spacing distribution: GpOE and GP UE

4.1. Pseudo-symmetric or complex symmetric matrix Hamiltonians

By Gaussian ensemble, we mean that the probability distribution of H is commonly given as

P(H) = N exp

(
−Tr(HH †)

2σ 2

)
. (1)

Let us consider a matrix Hamiltonian H given below which is pseudo-Hermitian as ηHη−1 =
H † and pseudo-real, i.e. ρHρ−1 = H ∗ [18]. It is self-pseudo-adjoint or symmetric as H ′ = H .
Here η are ρ are preferably involutory operators. It has got conditionally real eigenvalues iff
b2 � c2. Here the prime, the asterisk (K0) and the dagger denote transpose, conjugate and
transpose conjugate, respectively.

H =
[
a + b ic

ic a − b

]
, b2 � c2,

(2)

η = ρ =
[

1 0
0 −1

]
, E1,2 = a ±

√
b2 − c2.

One can construct an antilinear commutant � = ρ−1K0 [16, 18] of H such that [�,H ] = 0
or �H�−1 = H and �2 = 1. We would like to assert that here P = ρ−1 and T = K0

and hence the antilinear symmetry � = PT . When eigenvalues are real (b2 > c2), we
have PT �n = (−1)n�n. When b2 < c2, the PT -symmetry is spontaneously broken. This
Hamiltonian in our opinion is another realization of Hamiltonians with antilinear symmetry
as visualized by Haake (p 217 in [21]) as [A,D] = 0 such that A2 = 1.

We define pseudo-orthogonal transformation as pO ′ = δpO−1δ−1 such that for any two
arbitrary vectors from a linear space the scalar product remains invariant, i.e. x̃ ′δỹ = x ′δy,
where x̃ = pOx and ỹ = pOy. Let us represent pO, energy-eigenvalue matrix E and a
metric δ

pO =
[

cosh θ i sinh θ

−i sinh θ cosh θ

]
, δ =

[
0 −i
i 0

]
= σy, E =

[
E1 0
0 E2

]
, (3)

where −∞ < θ < ∞. The single parameter matrix pO, expressible as exp(2iθJ2) with
J2 = 1

2 iσy , constitutes a subgroup of SU(1, 1) [22]. A very important consequence of the
group connection is that we can generate all possible H in (2) as H = pOEpO−1. This
provides us with a unique connection between (a, b, c) and (E1, E2, θ) and the consequent
Jacobian is J = |s|

8 . We have P(s) = N sK0
(

s2

2σ 2

)
. By finding 〈s〉 introducing x = s

〈s〉 , we

eventually find the normalized NNLSD and call it as P GPOE(x):

P GPOE(x) = �4
(− 1

4

)
32π3

xK0

(
2�4(3/4)

π2
x2

)
. (4)

If we write it as P GPOE(x) = αxK0(βx2), we have α = 0.5818 and β = 0.4569. When
0 < x < 0.5, we have P GPOE(x) ∼ (0.5 − 1.2 ln x)x. For any other pseudo-symmetric
or complex symmetric matrix Hamiltonian that is composed of three independent Gaussian-
random variables (a, b, c) appearing linearly in H, we claim that P GPOE(x) is the universality.
The new ‘universality’ shows a distinctly different behaviour as compared to the usual ones
(see figure 1(b)).
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(a) (b)

Figure 1. (a) Various spacing statistics, P(x), see equations (4), (7) and the text; (b) P(x) for
0 < x < 0.5. Weaker level repulsion (higher P(x) for small values of x) in the case of GpOE

and GpUE than those of the known Wigner–Dyson distributions is believed to be the essence of
PT -symmetric systems.

4.2. Pseudo-Hermitian matrix Hamiltonians

We now consider pseudo-Hermitian matrix Hamiltonians with four parameters (a, b, c, d)

H =
[

a + b d + ic
−d + ic a − b

]
, e2 = b2 − c2 + d2 � 0,

(5)

η =
[

1 0
0 −1

]
, E1,2 = a ± e.

Here we have ηHη−1 = H †, P and T operators can be constructed as prescribed in [15,
17] and an antilinear commutant, �, of H can be constructed as prescribed in [16, 18].
Consider a transformation pU which preserves the pseudo-norm as x̃†ηỹ = x†ηy, where
x̃ = pUx, ỹ = pUy. In doing so, pU would satisfy an interesting condition, i.e. pU † =
ηpU−1η−1 which is called pseudo-unitarity (see e.g. [19]).

A general three-parameter (θ, ψ, φ) matrix, pU , which is pseudo-unitary under the same
metric η (5), can be written as

pU =
[

eiψ cosh θ eiφ sinh θ

−e−iφ sinh θ e−iψ cosh θ

]
, 0 � φ,ψ � 2π, 0 < θ < ∞. (6)

This constitutes a Lie group SU(1, 1) [22] with generators as J0 = 1
4σz, J1 = 1

4 iσy, J3 =
− 1

4 iσx . However, in order to construct the pseudo-Hermitian matrix (5) we require only two
parameters in pU . The same situation arises [20, 21] in the case of GUE, where two out
of three parameters suffice in writing the unitary matrix U; nevertheless, it requires three
parameters to have SU(2). Thus, we take ψ = 0 in (6) and generate H in equation (5) as
pUEpU−1 = H. This is how we go over to (E1, E2, φ, ψ) from (a, b, c, d). We find

P GPUE(x) = B2

2(
√

2 − 1)
x exp

(
B2x2

4

)
erfc

(
Bx√

2

)
, B = 2(

√
2 − log(1 +

√
2))√

π(
√

2 − 1)
. (7)

If we write it as P GPUE(x) = αx eβx2
erfc(γ x) where α = 2.5433, β = 0.5267, γ = 1.0263,

its linear dependence on x is deceptive and its behaviour near small values of x is actually
curved (short-dashed line in figure 1(b)) lying below the curve corresponding to P GPOE(x)

(see the solid line in figure 1(b)). For 0 < x < 0.5, we have P GPUE(x) ∼ 2.5x(1 − 0.95x).
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The essence of pseudo-Hermiticity and hence that of PT -symmetry lies in the weaker
level repulsion at smaller spacings as produced and shown here in figure 1. The enigmatic non-
trivial zeros of the Riemann zeta function are found to follow GUE level spacing distribution.
By constructing one more GpUE, wherein the interaction is pseudo-Hermitian under a metric
η = diag(et , e−t ), we conclude that in the case of quasi-Hermiticity (when the metric is real,
positive and diagonal) the spacing distribution for a domain of t remains hardly different from
that of GUE. Consequently, based on this and other arguments, we speculate [24] that the most
sought after Hamiltonian giving rise to enigmatic Riemann zeros could also be PT -symmetric.

5. Super-barrier reflectionlessness and PT -symmetry

5.1. A meeting ground of PT -symmetry and Hermiticity

Generally, the reflectivity R(E) of the potential barriers such as VG(x) = V0 e−x2
, VE(x) =

V0 sech2x and VL = V0
1+x2 is a smooth decreasing function of energy [25] with a rectangular

barrier as an exception. The rectangular potential entails reflectivity zeros above the barrier
energies (super-barrier energies). Usually, the reflectivity zeros are passed off as artificial
or arising from the interference between reflected waves from sharp edges. It is also found
that if the above-mentioned barriers are truncated on both the sides the reflectivity may show
oscillations [26]. The question as to whether there could be smooth potential barriers entailing
reflectivity zeros/minima becomes very interesting. There are two very interesting examples
in this regard. First, a very interesting semiclassical study of very weak reflection above the
non-analyticity of a barrier reveals zeros in R(E) for the potential VBerry(x) = V0(1 − e1/|x|)
[27]. Second, an inclusion [28] of two pairs of complex-conjugate turning points in the WKB
approximation brings to the light the zeros in reflectivity for the smooth single piece potential
VCh(x) = V0

1+x4 .

A recent study categorizes [29] the profiles VG(x), VL(x), VE(x) as type I. There are
strictly two complex-conjugate turning points at energies above the barrier and a simple WKB
method yields smoothly decreasing R(E). It also very crucially points out that these barriers
have top curvature as non-zero, i.e. V ′′(0) = 0, and the co-efficient of kurtosis as more than
3. In statistical [30] data analysis, the coefficient of kurtosis β2 is a measure of flatness of a
distribution function around its top. It is defined as

β2 = µ4µ0

µ2
2

, µn =
∫ ∞

−∞
(x − x̄)nV (x) dx, x̄ =

∫ ∞

−∞
xV (x) dx. (8)

Type-II barriers are the profiles which have either top curvature as zero or β2 lying in (1.8,
3.0), or both. The value 1.8 is the limiting (least) value of β2 for any single-top profile and
3 is the value of β2 for a Gaussian profile VG(x). Type II have been conjectured to possess
reflectivity which has zeros/minima (see figure 2). Note that VBerry(x) and VCh(x) are type II
as per the condition of top curvature (their β2 is indeterminate). Two examples of type-II
barriers are V1(x, n) = V0 e−x2n

and V2(x, n) = V0
1+x2n , n = 2, 3. The former has both the top

curvature as zero and β2 lying in (1.8, 3.0), and the latter profile has top curvature as zero and
has finite β2 only when n � 3.

In this section, we have covered hitherto known five criteria on a barrier to have reflectivity
zeros. All of these could at best be sufficient but not necessary. Further studies indicate that a
small deviation from symmetry of V (x) leads to the disappearance of zeros or weakening of
the minima. We thus believe that symmetry of the potential barriers is one of the necessary
conditions (see figure 2).

Recently, we have shown [31] that the real discrete spectrum of the potentials of the type
VK(x) = −x2K+2,K = 1, 2, . . . , which are a sub-class of the well-known PT -symmetric
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Figure 2. Exactly computed reflectivity, R(E), for exponential potentials, Vs(x) = V0 e−x4−sx .
The dotted line displays the reflectivity for Gaussian barrier and the solid line is for Vs=0(x).
The short-dashed, medium-dashed and long-dashed lines display the reflectivity when asymmetry
parameter s is 0.1, 0.5 and 1.0, respectively. Note that for the case of s = 0.1 feeble oscillations are
still sustained. Here V0 = 10 in arbitrary units. Note the flatness of the potential Vs=0(x) (thick
line) at the barrier top in comparison to the Gaussian barrier (thin line) in the inset. The value of
the kurtosis parameter β2 for the flat barrier is 2.18 (s = 0) and for Gaussian it is 3. The values
of the kurtosis parameter, β2, for the case of s = 0.1, 0.5, 1.0 are 2.46, 2.76 and 3.16, respectively.
In the cases of s = 0.5, 1.0, an increased value of V0 exhibits slightly more pronounced oscillations.

potential, i.e. Vν(x) = −(ix)ν [2], is nothing but the collection of reflectivity zeros of VK(x).
Note that V ′′

K(0) = 0 but their β2 is indeterminate. More crucially, we suggest that these
discrete energies are the result of PT -symmetric boundary conditions on the eigenfunctions.
Recall that this presents the scenario of PT -symmetry with a novelty wherein the eigenvalues
are real and discrete and the eigenfunction is also an eigenstate of PT , yet we do no have
bound states! The fact that eigenvalues of Vν(x) as a function of ν are known to be smooth
[2] and in agreement (without any discontinuity) say when ν = 4(K = 1) sets the stage for
the meeting ground of PT -symmetry and Hermiticity.

We would like to present the PT -symmetric origin of reflectivity zeros in two more
ways in the following. When the potential converges asymptotically, i.e. V (±∞) = 0, the
boundary conditions on the wavefunction, namely �(x) ∼ �(x) e−kx + �(−x) ekx , yield
possible discrete eigenvalues of bound states. The boundary conditions on the wavefunction
�(x) ∼ �(−x) e−ikx + �(x) eikx bring out the possible complex energy resonances. For
reflectivity zeros, we require �(x) ∼ �(−x) eikx + �(x) eikx ; note that PT �(x) = �(x).

Here �(x � 0) = 1,�(x < 0) = 0.

For exact quantal calculation of reflectivity zeros, we have to impose PT -symmetric
boundary on the wavefunction. We show below that the same will be attained by
PT -symmetric turning points in the semiclassical method. An extension of WKB has
been suggested [28] wherein one can use two pairs of complex-conjugate turning points
(z1 = −a + ib, z2 = a + ib, z∗

1 = −a − ib, z∗
2 = −a − ib) for E > V0:

R(E) = |2 cos[πα(E)] e−πβ(E)|2, α(E) = 1

π

∫ z2

z1

p(z) dz, β(E) = 1

π

∫ z1

z∗
1

p(z) dz.

(9)

We remark that z1, z2 are PT -symmetric turning points such that z1 = z, z2 = −z∗ and the
condition of reflectionlessness in equation (9) becomes α(E) = (n + 1/2) which is nothing
but the quantization law [10] for complex PT -symmetric potentials:

1

π

∫ z2

z1

p(z) dz = (n + 1/2). (10)
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6. Complex eigenvalues in the cranking model of the nucleus

6.1. A dichotomy between PT-symmetry and Hermiticity

The exactly solvable Hamiltonian of the cranking model of the nucleus is due to Valatin [32]
and is given as

H = 1

2m

(
p2

x + p2
y + p2

z

)
+

1

2
mω2

2(x
2 + y2) +

1

2
mω2

3z
2 − �Jx, ω3 < ω2. (11)

The linear canonical transformations from y, z, py, pz to new canonical Q2,Q3, P2, P3 are
given as

α2Q2 = λ2[m(α2 − �β2)y − β2pz], mα3Q3 = λ3[m(α3 + �β3)y − β3py],
(12)

P2 = λ2[m(α2β2 − �)z + py], P3 = λ3[m(α3β3 + �)z + pz].

Various parameters are defined as

α2
2 = ω2

+ + �2 +
√

S, α2
3 = ω2

+ + �2 −
√

S, ω2
+ = 1

2

(
ω2

2 + ω2
3

)
,

ω2
− = 1

2

(
ω2

2 − ω2
3

)
, S = (ω2

−)2 + 4�2ω2
+, β2 = 2�α2

/(
α2

2 − ω2
3 + �2

)
,

(13)

β3 = −2�α3
/(

α2
3 − ω2

2 + �2
)
, λ2 =

√
α2

µ2
, λ3 =

√
α3

µ3
,

µ2 = α2 + α3β2β3, µ3 = α3 + α2β2β3 γ = µ2

β2
= µ3

β3
.

Several other interesting identities can be found in the appendix of [32]. The Hamiltonian H
gets transformed to

H = 1

2m
p2

x +
1

2
mω2

2x
2 +

1

2m
P 2

2 +
1

2
mα2

2Q
2
2 +

1

2m
P 2

3 +
1

2
mα2

3Q
2
3. (14)

When H� = En1,n2,n3ψ and ψ(x, y, z) = φ(x)χn2,n3(y, z), we get

En1,n2,n3 = (n1 + 1/2)h̄ω2 + (n2 + 1/2)h̄α2 + (n3 + 1/2)h̄α3. (15)

The unnormalized eigenfunctions are

φn1(x) = (px + imωx)n1 exp

(
−mω2x

2

2h̄

)
,

χn2,n3(y, z) = (P2 + imα2Q2)
n2(P3 + imα3Q3)

n3χ0(y, z),
(16)

χ0(y, z) = exp
[
− m

2h̄τ
(β2y

2 + 2i(1 − σ)yz + β3z
2)

]
,

τ = (1 + β2β3)γ
−1, σ = τ

2

(
α2

β2
+

α3

β3

)
.

Very interestingly, we find that the parameters β, τ, γ are odd functions of �, whereas the
parameters α,µ, σ are even functions of �. Consequently, under time reversal, T, we have
the following transformation laws:

T {i, Jx,�}T −1 = −{i, Jx,�},
T {β, τ, γ }T −1 = −{β, τ, γ }, (17)

T {α,µ, σ }T −1 = +{α,µ, σ }.
Under parity transformation, P, we have

P {x, y, z, px, py, pz}P −1 = −{x, y, z, px, py, pz} and

P {�, i, Jx}P −1 == +{�, i, Jx}. (18)
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• The Hamiltonian H (11) would be ordinarily categorized as Hermitian, i.e. H † = H ,
using equations (7), (8), we claim that H is P-symmetric and T-symmetric to become
PT -symmetric though trivially as

(PT )H(PT )−1 = H and PHP −1 = H = H †. (19)

Let us rewrite the ground-state eigenfunction (6) as

χ0,0(y, z) = exp[−(Ay2 + Byz + Cz2)], A = Ar + iAi,
(20)

B = Br + iBi, C = Cr + iCi.

• One finds that when � < ω3, the parameters A, iB,C are purely real and so are all the
eigenvalues, En1,n2,n3(� < ω3) (15). The eigenfunction χ0,0(y, z) is real and vanishing
as y, z → ±∞, as we have Ar > 0 and the discriminant �(=B2

r − 4ArCr) < 0.χ0,0 is
also an eigenstate of PT as PT χ0,0(y, z) = χ0,0(y, z) conforming to the exact symmetry
scenario of a PT -symmetric Hamiltonian.

• When � > ω3, we find that the energy eigenvalues (15) and the wavefunctions (χ0,0(y, z))

are real. However, χ0,0(y, z) fails to satisfy the Dirichlet boundary condition as Ar < 0
and � > 0. Thus, this regime is null for eigenvalues and needs to be excluded from (15).
Let us remark that this regime is generally missed out.

• When ω3 < � < ω2, the parameters α2, β, τ, σ turn out to be complex, all the eigenvalues
(15) become complex (conjugate) and notably the eigenstates are no more the simultaneous
eigenstates of PT . Very interestingly, in this regime Ar > 0 but the discriminant
� = A2

r − 4BrCr becomes extremely small (∼10−15) and a spurious function of �, its
sign fluctuates and it is rendered indefinite.

Since in the regime (ω3, ω2) of � the eigenvalues are complex and �(x ∼ ±∞, y ∼
±∞, z ∼ ±∞) ∼ 0, the complex energies can represent resonances only when χ0,0(y, z)

diverges asymptotically. On the other hand, if χ0,0(y, z) converges asymptotically, this regime
would represent the spontaneous breaking of PT -symmetry. The convergence/divergence of
χ0,0(y, z) is decided solely by the sign of the discriminant, �(�), and it being spurious gives
rise to a dichotomy.

7. Conclusions

In conclusion, we wish that this paper succeeds in bringing out so many possibilities with new
complex PT -symmetric Hamiltonians. Most interestingly, we get both usual and unusual
results, the former are reassuring and the latter if observed may bring complex PT -symmetric
interactions into contention. For instance, the unusual energy band structure in condensed
matter physics or in wave propagation phenomenon may necessitate the use of interaction
which breaks P and T individually yet preserves them jointly. Similarly, weaker level repulsion
in the nearest-neighbour level spacing distribution for small spacings would indicate that the
system is PT -symmetric. Several branches of spectra for a complex PT -symmetric potential
as suggested by our phase-space quantization may bring out ‘one more quantum number’ to
label even the spectrum of one-dimensional potential.

The instances such as super-barrier reflectionlessness and the complex eigenenergies of
the Hamiltonian of the cranking model of the nucleus present a meeting ground for the two:
PT -symmetry and Hermiticity. However, the latter instance remains an unresolved dichotomy.

Next, one may explore the possibility of working out statistical mechanics, Wigner
distribution function, Freeman path integrals, Feynman diagrams and periodic orbit theory,
etc with the complex PT -symmetric/pseudo-Hermitian Hamiltonians. Further, it would be
worthwhile to enlist both the usual and unusual results in these studies.
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